There are big, open scientific questions about levels of exposure and toxicity

Tiny particles of plastic have been found everywhere — from the deepest place on the planet, the Mariana Trench, to the top of Mount Everest. And now more and more studies are finding that microplastics, defined as plastic pieces less than 5 millimeters across, are also in our bodies.

“What we are looking at is the biggest oil spill ever,” says Maria Westerbos, founder of the Plastic Soup Foundation, an Amsterdam-based nonprofit advocacy organization that works to reduce plastic pollution around the world. Nearly all plastics are made from fossil fuel sources. And microplastics are “everywhere,” she adds, “even in our bodies.”

In recent years, microplastics have been documented in all parts of the human lung, in maternal and fetal placental tissues, in human breast milk and in human blood. Microplastics scientist Heather Leslie, formerly of Vrije Universiteit Amsterdam, and colleagues found microplastics in blood samples from 17 of 22 healthy adult volunteers in the Netherlands. The finding, published last year in Environment International, confirms what many scientists have long suspected: These tiny bits can get absorbed into the human bloodstream.

“We went from expecting plastic particles to be absorbable and present in the human bloodstream to knowing that they are,” Leslie says.

The findings aren’t entirely surprising; plastics are all around us. Durable, versatile and cheap to manufacture, they are in our clothes, cosmetics, electronics, tires, packaging and so many more items of daily use. And the types of plastic materials on the market continues to increase. “There were around 3,000 [plastic materials] when I started researching microplastics over a decade ago,” Leslie says. “Now there are over 9,600. That’s a huge number, each with its own chemical makeup and potential toxicity.”

Though durable, plastics do degrade, by weathering from water, wind, sunlight or heat — as in ocean environments or in landfills — or by friction, in the case of car tires, which releases plastic particles along roadways during motion and braking.

In addition to studying microplastic particles, researchers are also trying to get a handle on nanoplastics, particles which are less than 1 micrometer in length. “The large plastic objects in the environment will break down into micro- and nanoplastics, constantly raising particle numbers,” says toxicologist Dick Vethaak of the Institute for Risk Assessment Sciences at Utrecht University in the Netherlands, who collaborated with Leslie on the study finding microplastics in human blood.

Nearly two decades ago, marine biologists began drawing attention to the accumulation of microplastics in the ocean and their potential to interfere with organism and ecosystem health. But only in recent years have scientists started focusing on microplastics in people’s food and drinking water — as well as in indoor air.

Plastic particles are also intentionally added to cosmetics like lipstick, lip gloss and eye makeup to improve their feel and finish, and to personal care products, such as face scrubs, toothpastes and shower gels, for the cleansing and exfoliating properties. When washed off, these microplastics enter the sewage system. They can end up in the sewage sludge from wastewater treatment plants, which is used to fertilize agricultural lands, or even in treated water released into waterways.

What if any damage microplastics may do when they get into our bodies is not clear, but a growing community of researchers investigating these questions thinks there is reason for concern. Inhaled particles might irritate and damage the lungs, akin to the damage caused by other particulate matter. And although the composition of plastic particles varies, some contain chemicals that are known to interfere with the body’s hormones.

Currently there are huge knowledge gaps in our understanding of how these particles are processed by the human body.

How do microplastics get into our bodies?
Research points to two main entry routes into the human body: We swallow them and we breathe them in.

Evidence is growing that our food and water is contaminated with microplastics. A study in Italy, reported in 2020, found microplastics in everyday fruits and vegetables. Wheat and lettuce plants have been observed taking up microplastic particles in the lab; uptake from soil containing the particles is probably how they get into our produce in the first place.

Sewage sludge can contain microplastics not only from personal care products, but also from washing machines. One study looking at sludge from a wastewater treatment plant in southwest England found that if all the treated sludge produced there were used to fertilize soils, a volume of microplastic particles equivalent to what is found in more than 20,000 plastic credit cards could potentially be released into the environment each month.

On top of that, fertilizers are coated with plastic for controlled release, plastic mulch film is used as a protective layer for crops and water containing microplastics is used for irrigation, says Sophie Vonk, a researcher at the Plastic Soup Foundation.

“Agricultural fields in Europe and North America are estimated to receive far higher quantities of microplastics than global oceans,” Vonk says.

Leave a Reply

Your email address will not be published.